Convergence Of Series: Sin^2(2^k X)

by Admin 36 views
Convergence of  $\sum_{n=1}^{\infty} a_n,$  where  $a_n = \prod_{k=1}^{n} \sin^2(2^k x)$ and $x \in (-\infty, +\infty)$

Let's dive into determining whether the series āˆ‘n=1āˆžan\sum_{n=1}^{\infty} a_n converges, where an=āˆk=1nsin⁔2(2kx)a_n = \prod_{k=1}^{n} \sin^2(2^k x) and x∈(āˆ’āˆž,+āˆž)x \in (-\infty, +\infty). This is a fascinating problem that combines trigonometry and series convergence, so let's break it down.

Initial Thoughts and Challenges

When we first encounter this problem, the natural inclination might be to reach for the ratio test. However, the ratio test involves evaluating the limit of an+1an\frac{a_{n+1}}{a_n} as nn approaches infinity. In this case:

an+1an=āˆk=1n+1sin⁔2(2kx)āˆk=1nsin⁔2(2kx)=sin⁔2(2n+1x)\frac{a_{n+1}}{a_n} = \frac{\prod_{k=1}^{n+1} \sin^2(2^k x)}{\prod_{k=1}^{n} \sin^2(2^k x)} = \sin^2(2^{n+1} x)

The problem here is that sin⁔2(2n+1x)\sin^2(2^{n+1} x) oscillates between 0 and 1 as nn goes to infinity, unless xx takes on specific values (like integer multiples of Ļ€\pi). Therefore, the limit lim⁔nā†’āˆžan+1an\lim_{n \to \infty} \frac{a_{n+1}}{a_n} doesn't generally exist, and the ratio test becomes inconclusive. So, we need to explore other avenues.

Exploring Special Cases

Before getting too deep into general approaches, let's consider some special cases that might give us insights:

  1. If x=kπx = k\pi where kk is an integer:

    In this scenario, sin⁔(2kx)=sin⁔(2kkĻ€)=0\sin(2^k x) = \sin(2^k k\pi) = 0 for all k≄0k \geq 0. Consequently, an=0a_n = 0 for all nn, and the series converges trivially to 0.

  2. If x=kπ2mx = \frac{k\pi}{2^m} for some integers kk and mm:

    This case is interesting because at some point, one of the terms in the product will become zero. Specifically, when k=mk = m, we have sin⁔(2mx)=sin⁔(kĻ€)=0\sin(2^m x) = \sin(k\pi) = 0. Thus, for all n≄mn \geq m, an=0a_n = 0, and the series again converges trivially.

These special cases show us that for certain values of xx, the series converges quite easily. But what happens for other values of xx?

A More General Approach

For a more general approach, we'll need to analyze the behavior of the terms ana_n more closely. Notice that ana_n is a product of squared sine functions. Since 0≤sin⁔2(y)≤10 \leq \sin^2(y) \leq 1 for any yy, we know that 0≤an≤10 \leq a_n \leq 1 for all nn. However, this alone isn't enough to determine convergence. We need to determine whether ana_n tends to zero quickly enough as nn increases.

Let's try to rewrite ana_n in a more manageable form. We can use the identity sin⁔(2y)=2sin⁔(y)cos⁔(y)\sin(2y) = 2\sin(y)\cos(y) to manipulate the product. Notice that:

āˆk=1nsin⁔(2kx)=sin⁔(2x)sin⁔(4x)sin⁔(8x)…sin⁔(2nx)\prod_{k=1}^{n} \sin(2^k x) = \sin(2x) \sin(4x) \sin(8x) \dots \sin(2^n x)

Multiply and divide by sin⁔(x)\sin(x):

sin⁔(x)āˆk=1nsin⁔(2kx)sin⁔(x)=sin⁔(x)sin⁔(2x)sin⁔(4x)…sin⁔(2nx)sin⁔(x)\frac{\sin(x) \prod_{k=1}^{n} \sin(2^k x)}{\sin(x)} = \frac{\sin(x) \sin(2x) \sin(4x) \dots \sin(2^n x)}{\sin(x)}

Now, repeatedly apply the identity sin⁔(y)cos⁔(y)=12sin⁔(2y)\sin(y)\cos(y) = \frac{1}{2}\sin(2y). We need to introduce cosine terms into the product. To do this, multiply and divide by cos⁔(x)\cos(x), cos⁔(2x)\cos(2x), ..., cos⁔(2nāˆ’1x)\cos(2^{n-1}x):

sin⁔(x)āˆk=1nsin⁔(2kx)sin⁔(x)=sin⁔(x)cos⁔(x)cos⁔(2x)…cos⁔(2nāˆ’1x)sin⁔(2x)sin⁔(4x)…sin⁔(2nx)sin⁔(x)cos⁔(x)cos⁔(2x)…cos⁔(2nāˆ’1x)\frac{\sin(x) \prod_{k=1}^{n} \sin(2^k x)}{\sin(x)} = \frac{\sin(x) \cos(x) \cos(2x) \dots \cos(2^{n-1} x) \sin(2x) \sin(4x) \dots \sin(2^n x)}{\sin(x) \cos(x) \cos(2x) \dots \cos(2^{n-1} x)}

Applying the identity sin⁔(y)cos⁔(y)=12sin⁔(2y)\sin(y)\cos(y) = \frac{1}{2}\sin(2y) repeatedly, we get:

12sin⁔(2x)cos⁔(2x)…cos⁔(2nāˆ’1x)sin⁔(4x)…sin⁔(2nx)sin⁔(x)cos⁔(x)cos⁔(2x)…cos⁔(2nāˆ’1x)=122sin⁔(4x)…cos⁔(2nāˆ’1x)sin⁔(8x)…sin⁔(2nx)sin⁔(x)cos⁔(x)cos⁔(2x)…cos⁔(2nāˆ’1x)=⋯=12nsin⁔(2n+1x)sin⁔(x)\frac{\frac{1}{2}\sin(2x) \cos(2x) \dots \cos(2^{n-1} x) \sin(4x) \dots \sin(2^n x)}{\sin(x) \cos(x) \cos(2x) \dots \cos(2^{n-1} x)} = \frac{\frac{1}{2^2}\sin(4x) \dots \cos(2^{n-1} x) \sin(8x) \dots \sin(2^n x)}{\sin(x) \cos(x) \cos(2x) \dots \cos(2^{n-1} x)} = \dots = \frac{\frac{1}{2^n} \sin(2^{n+1} x)}{\sin(x)}

Thus, we have:

āˆk=1nsin⁔(2kx)=sin⁔(2n+1x)2nsin⁔(x)\prod_{k=1}^{n} \sin(2^k x) = \frac{\sin(2^{n+1} x)}{2^n \sin(x)}

Therefore,

an=āˆk=1nsin⁔2(2kx)=(sin⁔(2n+1x)2nsin⁔(x))2=sin⁔2(2n+1x)4nsin⁔2(x)a_n = \prod_{k=1}^{n} \sin^2(2^k x) = \left( \frac{\sin(2^{n+1} x)}{2^n \sin(x)} \right)^2 = \frac{\sin^2(2^{n+1} x)}{4^n \sin^2(x)}

Now, our series becomes:

āˆ‘n=1āˆžan=āˆ‘n=1āˆžsin⁔2(2n+1x)4nsin⁔2(x)\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\sin^2(2^{n+1} x)}{4^n \sin^2(x)}

Convergence Analysis

We can now analyze the convergence of this series. First, note that if x=kĻ€x = k\pi where kk is an integer, or if x=kĻ€2mx = \frac{k\pi}{2^m} for some integers kk and mm, then sin⁔(x)=0\sin(x) = 0, and our expression is undefined. However, we've already established that the series converges to 0 in these cases.

Assuming sin⁔(x)≠0\sin(x) \neq 0, we can use the comparison test. Since 0≤sin⁔2(2n+1x)≤10 \leq \sin^2(2^{n+1} x) \leq 1, we have:

0≤sin⁔2(2n+1x)4nsin⁔2(x)≤14nsin⁔2(x)0 \leq \frac{\sin^2(2^{n+1} x)}{4^n \sin^2(x)} \leq \frac{1}{4^n \sin^2(x)}

The series āˆ‘n=1āˆž14nsin⁔2(x)=1sin⁔2(x)āˆ‘n=1āˆž14n\sum_{n=1}^{\infty} \frac{1}{4^n \sin^2(x)} = \frac{1}{\sin^2(x)} \sum_{n=1}^{\infty} \frac{1}{4^n} is a geometric series with a common ratio of 14\frac{1}{4}, which converges because ∣14∣<1\left| \frac{1}{4} \right| < 1. Specifically:

āˆ‘n=1āˆž14n=141āˆ’14=1434=13\sum_{n=1}^{\infty} \frac{1}{4^n} = \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}

Thus, āˆ‘n=1āˆž14nsin⁔2(x)=13sin⁔2(x)\sum_{n=1}^{\infty} \frac{1}{4^n \sin^2(x)} = \frac{1}{3\sin^2(x)}.

By the comparison test, since āˆ‘n=1āˆž14nsin⁔2(x)\sum_{n=1}^{\infty} \frac{1}{4^n \sin^2(x)} converges, the series āˆ‘n=1āˆžsin⁔2(2n+1x)4nsin⁔2(x)\sum_{n=1}^{\infty} \frac{\sin^2(2^{n+1} x)}{4^n \sin^2(x)} also converges.

Final Conclusion

In conclusion, the series āˆ‘n=1āˆžan\sum_{n=1}^{\infty} a_n, where an=āˆk=1nsin⁔2(2kx)a_n = \prod_{k=1}^{n} \sin^2(2^k x), converges for all x∈(āˆ’āˆž,+āˆž)x \in (-\infty, +\infty). If x=kĻ€x = k\pi or x=kĻ€2mx = \frac{k\pi}{2^m} for integers kk and mm, the series converges trivially to 0. Otherwise, it converges by comparison to a geometric series.

So there you have it, guys! A detailed explanation of the convergence of this intriguing series. Hope this helps!